Evidential Logistic Regression for Binary SVM Classifier Calibration
نویسندگان
چکیده
The theory of belief functions has been successfully used in many classification tasks. It is especially useful when combining multiple classifiers and when dealing with high uncertainty. Many classification approaches such as k-nearest neighbors, neural network or decision trees have been formulated with belief functions. In this paper, we propose an evidential calibration method that transforms the output of a classifier into a belief function. The calibration, which is based on logistic regression, is computed from a likelihood-based belief function. The uncertainty of the calibration step depends on the number of training samples and is encoded within a belief function. We apply our method to the calibration and combination of several SVM classifiers trained with different amounts of data.
منابع مشابه
Calculating classifier calibration performance with a custom modification of Weka
Calibration is often overlooked in machine-learning problem-solving approaches, even in situations where an accurate estimation of predicted probabilities, and not only a discrimination between classes, is critical for decision-making. One of the reasons is the lack of readily available open-source software packages which can easily calculate calibration metrics. In order to provide one such to...
متن کاملBoosting SVM Classifiers with Logistic Regression
The support vector machine classifier is a linear maximum margin classifier. It performs very well in many classification applications. Although, it could be extended to nonlinear cases by exploiting the idea of kernel, it might still suffer from the heterogeneity in the training examples. Since there are very few theories in the literature to guide us on how to choose kernel functions, the sel...
متن کاملPredicting corporate financial distress based on integration of support vector machine and logistic regression
The support vector machine (SVM) has been applied to the problem of bankruptcy prediction, and proved to be superior to competing methods such as the neural network, the linear multiple discriminant approaches and logistic regression. However, the conventional SVM employs the structural risk minimization principle, thus empirical risk of misclassification may be high, especially when a point to...
متن کاملThe Effect of Transitive Closure on the Calibration of Logistic Regression for Entity Resolution
This paper describes a series of experiments in using logistic regression machine learning as a method for entity resolution. From these experiments the authors concluded that when a supervised ML algorithm is trained to classify a pair of entity references as linked or not linked pair, the evaluation of the model’s performance should take into account the transitive closure of its pairwise lin...
متن کاملNomograms for Visualizing Linear Support Vector Machines
Support vector machines are often considered to be black box learning algorithms. We show that for linear kernels it is possible to open this box and visually depict the content of the SVM classifier in high-dimensional space in the interactive format of a nomogram. We provide a crosscalibration method for obtaining probabilistic predictions from any SVM classifier, which control for the genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014